33 ac_index = 3 * ac_index - 510;
42 return 3 * (ac_index + pitch_delay_min);
43 else if(ac_index < 12)
44 return 3 * pitch_delay_min + ac_index + 6;
46 return 3 * (ac_index + pitch_delay_min) - 18;
53 return 3 * pitch_delay_min + ac_index - 2;
59 return ac_index + 105;
61 return 6 * (ac_index - 368);
67 return 6 * pitch_delay_min + ac_index - 3;
71 int16_t* quant_energy,
73 int log2_ma_pred_order,
77 int avg_gain=quant_energy[(1 << log2_ma_pred_order) - 1];
79 for(i=(1 << log2_ma_pred_order) - 1; i>0; i--)
81 avg_gain += quant_energy[i-1];
82 quant_energy[i] = quant_energy[i-1];
86 quant_energy[0] =
FFMAX(avg_gain >> log2_ma_pred_order, -10240) - 4096;
88 quant_energy[0] = (6165 * ((
ff_log2(gain_corr_factor) >> 2) - (13 << 13))) >> 13;
96 const int16_t* quant_energy,
97 const int16_t* ma_prediction_coeff,
105 for(i=0; i<ma_pred_order; i++)
106 mr_energy += quant_energy[i] * ma_prediction_coeff[i];
108 mr_energy = gain_corr_factor * exp(
M_LN10 / (20 << 23) * mr_energy) /
110 return mr_energy >> 12;
115 const float *pred_table)
120 float val = fixed_gain_factor *
124 sqrtf(fixed_mean_energy);
127 memmove(&prediction_error[0], &prediction_error[1],
128 3 *
sizeof(prediction_error[0]));
129 prediction_error[3] = 20.0 * log10f(fixed_gain_factor);
135 const int prev_lag_int,
const int subframe,
136 int third_as_first,
int resolution)
139 if (subframe == 0 || (subframe == 2 && third_as_first)) {
141 if (pitch_index < 197)
144 pitch_index = 3 * pitch_index - 335;
147 if (resolution == 4) {
152 if (pitch_index < 4) {
154 pitch_index = 3 * (pitch_index + search_range_min) + 1;
155 }
else if (pitch_index < 12) {
157 pitch_index += 3 * search_range_min + 7;
160 pitch_index = 3 * (pitch_index + search_range_min - 6) + 1;
166 if (resolution == 5) {
174 *lag_int = pitch_index * 10923 >> 15;
175 *lag_frac = pitch_index - 3 * *lag_int - 1;
void ff_decode_pitch_lag(int *lag_int, int *lag_frac, int pitch_index, const int prev_lag_int, const int subframe, int third_as_first, int resolution)
Decode the adaptive codebook index to the integer and fractional parts of the pitch lag for one subfr...
int ff_log2(uint32_t value)
Calculate log2(x).
float ff_dot_productf(const float *a, const float *b, int length)
Return the dot product.
int ff_acelp_decode_6bit_to_2nd_delay6(int ac_index, int pitch_delay_min)
Decode pitch delay of the second subframe encoded by 6 bits with 1/6 precision.
int ff_acelp_decode_4bit_to_2nd_delay3(int ac_index, int pitch_delay_min)
Decode pitch delay with 1/3 precision.
int ff_acelp_decode_8bit_to_1st_delay3(int ac_index)
Decode pitch delay of the first subframe encoded by 8 bits with 1/3 resolution.
int ff_acelp_decode_9bit_to_1st_delay6(int ac_index)
Decode pitch delay of the first subframe encoded by 9 bits with 1/6 precision.
int ff_acelp_decode_5_6_bit_to_2nd_delay3(int ac_index, int pitch_delay_min)
Decode pitch delay of the second subframe encoded by 5 or 6 bits with 1/3 precision.
void ff_acelp_update_past_gain(int16_t *quant_energy, int gain_corr_factor, int log2_ma_pred_order, int erasure)
Update past quantized energies.
int16_t ff_acelp_decode_gain_code(DSPContext *dsp, int gain_corr_factor, const int16_t *fc_v, int mr_energy, const int16_t *quant_energy, const int16_t *ma_prediction_coeff, int subframe_size, int ma_pred_order)
Decode the adaptive codebook gain and add correction (4.1.5 and 3.9.1 of G.729).
int32_t(* scalarproduct_int16)(const int16_t *v1, const int16_t *v2, int len, int shift)
Calculate scalar product of two vectors.
static const float energy_mean[8]
desired mean innovation energy, indexed by active mode
float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy, float *prediction_error, float energy_mean, const float *pred_table)
Calculate fixed gain (part of section 6.1.3 of AMR spec)