41 #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark)
42 #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark)
44 #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f
46 #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f
48 #define PSY_3GPP_EN_SPREAD_HI_S 1.5f
50 #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f
52 #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f
54 #define PSY_3GPP_RPEMIN 0.01f
55 #define PSY_3GPP_RPELEV 2.0f
57 #define PSY_3GPP_C1 3.0f
58 #define PSY_3GPP_C2 1.3219281f
59 #define PSY_3GPP_C3 0.55935729f
61 #define PSY_SNR_1DB 7.9432821e-1f
62 #define PSY_SNR_25DB 3.1622776e-3f
64 #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f
65 #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f
66 #define PSY_3GPP_SAVE_ADD_L -0.84285712f
67 #define PSY_3GPP_SAVE_ADD_S -0.75f
68 #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f
69 #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f
70 #define PSY_3GPP_SPEND_ADD_L -0.35f
71 #define PSY_3GPP_SPEND_ADD_S -0.26111111f
72 #define PSY_3GPP_CLIP_LO_L 0.2f
73 #define PSY_3GPP_CLIP_LO_S 0.2f
74 #define PSY_3GPP_CLIP_HI_L 0.95f
75 #define PSY_3GPP_CLIP_HI_S 0.75f
77 #define PSY_3GPP_AH_THR_LONG 0.5f
78 #define PSY_3GPP_AH_THR_SHORT 0.63f
86 #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f)
89 #define PSY_LAME_FIR_LEN 21
90 #define AAC_BLOCK_SIZE_LONG 1024
91 #define AAC_BLOCK_SIZE_SHORT 128
92 #define AAC_NUM_BLOCKS_SHORT 8
93 #define PSY_LAME_NUM_SUBBLOCKS 3
213 -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
214 -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
215 -5.52212e-17 * 2, -0.313819 * 2
224 int lower_range = 12, upper_range = 12;
225 int lower_range_kbps = psy_abr_map[12].
quality;
226 int upper_range_kbps = psy_abr_map[12].
quality;
232 for (i = 1; i < 13; i++) {
233 if (
FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) {
235 upper_range_kbps = psy_abr_map[i ].
quality;
237 lower_range_kbps = psy_abr_map[i - 1].
quality;
243 if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps))
244 return psy_abr_map[lower_range].
st_lrm;
245 return psy_abr_map[upper_range].
st_lrm;
254 for (i = 0; i < avctx->
channels; i++) {
272 return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f));
283 return 3.64 * pow(f, -0.8)
284 - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4))
285 + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7))
286 + (0.6 + 0.04 * add) * 0.001 * f * f * f * f;
293 float prev, minscale, minath, minsnr, pe_min;
296 const float num_bark =
calc_bark((
float)bandwidth);
309 for (j = 0; j < 2; j++) {
311 const uint8_t *band_sizes = ctx->
bands[j];
313 float avg_chan_bits = chan_bitrate / ctx->
avctx->
sample_rate * (j ? 128.0f : 1024.0f);
322 for (g = 0; g < ctx->
num_bands[j]; g++) {
324 bark =
calc_bark((i-1) * line_to_frequency);
325 coeffs[
g].
barks = (bark + prev) / 2.0;
328 for (g = 0; g < ctx->
num_bands[j] - 1; g++) {
330 float bark_width = coeffs[g+1].
barks - coeffs->
barks;
333 coeff->
spread_low[1] = pow(10.0, -bark_width * en_spread_low);
334 coeff->
spread_hi [1] = pow(10.0, -bark_width * en_spread_hi);
335 pe_min = bark_pe * bark_width;
336 minsnr = pow(2.0
f, pe_min / band_sizes[g]) - 1.5f;
340 for (g = 0; g < ctx->
num_bands[j]; g++) {
341 minscale =
ath(start * line_to_frequency,
ATH_ADD);
342 for (i = 1; i < band_sizes[
g]; i++)
343 minscale =
FFMIN(minscale,
ath((start + i) * line_to_frequency,
ATH_ADD));
344 coeffs[
g].
ath = minscale - minath;
345 start += band_sizes[
g];
363 ret = 0.7548f * (in - state[0]) + 0.5095
f * state[1];
373 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36
381 const int16_t *audio,
383 int channel,
int prev_type)
387 int attack_ratio = br <= 16000 ? 18 : 10;
390 uint8_t grouping = 0;
394 memset(&wi, 0,
sizeof(wi));
397 int switch_to_eight = 0;
398 float sum = 0.0, sum2 = 0.0;
401 for (i = 0; i < 8; i++) {
402 for (j = 0; j < 128; j++) {
409 for (i = 0; i < 8; i++) {
410 if (s[i] > pch->win_energy * attack_ratio) {
416 pch->win_energy = pch->win_energy*7/8 + sum2/64;
418 wi.window_type[1] = prev_type;
426 grouping = pch->next_grouping;
442 pch->next_window_seq = next_type;
444 for (i = 0; i < 3; i++)
445 wi.window_type[i] = prev_type;
456 for (i = 0; i < 8; i++) {
457 if (!((grouping >> i) & 1))
459 wi.grouping[lastgrp]++;
476 float clipped_pe, bit_save, bit_spend, bit_factor, fill_level;
480 fill_level = av_clipf((
float)ctx->
fill_level / size, clip_low, clip_high);
481 clipped_pe = av_clipf(pe, ctx->
pe.
min, ctx->
pe.
max);
482 bit_save = (fill_level + bitsave_add) * bitsave_slope;
483 assert(bit_save <= 0.3f && bit_save >= -0.05000001
f);
484 bit_spend = (fill_level + bitspend_add) * bitspend_slope;
485 assert(bit_spend <= 0.5f && bit_spend >= -0.1
f);
492 bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->
pe.
max - ctx->
pe.
min)) * (clipped_pe - ctx->
pe.
min);
526 float thr_avg, reduction;
528 thr_avg = powf(2.0
f, (a - pe) / (4.0
f * active_lines));
529 reduction = powf(2.0
f, (a - desired_pe) / (4.0
f * active_lines)) - thr_avg;
531 return FFMAX(reduction, 0.0
f);
537 float thr = band->
thr;
540 thr = powf(thr, 0.25
f) + reduction;
541 thr = powf(thr, 4.0
f);
567 float desired_bits, desired_pe, delta_pe, reduction, spread_en[128] = {0};
568 float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f;
569 float pe = pctx->chan_bitrate > 32000 ? 0.0f :
FFMAX(50.0
f, 100.0
f - pctx->chan_bitrate * 100.0f / 32000.0f);
570 const int num_bands = ctx->num_bands[wi->num_windows == 8];
571 const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8];
576 for (w = 0; w < wi->num_windows*16; w += 16) {
577 for (
g = 0;
g < num_bands;
g++) {
580 float form_factor = 0.0f;
582 for (i = 0; i < band_sizes[
g]; i++) {
583 band->
energy += coefs[start+i] * coefs[start+i];
584 form_factor += sqrtf(fabs(coefs[start+i]));
587 band->
nz_lines = form_factor / powf(band->
energy / band_sizes[
g], 0.25f);
589 start += band_sizes[
g];
593 for (w = 0; w < wi->num_windows*16; w += 16) {
597 spread_en[0] = bands[0].
energy;
598 for (
g = 1;
g < num_bands;
g++) {
599 bands[
g].
thr =
FFMAX(bands[
g].thr, bands[
g-1].thr * coeffs[
g].spread_hi[0]);
600 spread_en[w+
g] =
FFMAX(bands[
g].energy, spread_en[w+
g-1] * coeffs[
g].spread_hi[1]);
602 for (
g = num_bands - 2;
g >= 0;
g--) {
603 bands[
g].
thr =
FFMAX(bands[
g].thr, bands[
g+1].thr * coeffs[
g].spread_low[0]);
604 spread_en[w+
g] =
FFMAX(spread_en[w+
g], spread_en[w+
g+1] * coeffs[
g].spread_low[1]);
607 for (
g = 0;
g < num_bands;
g++) {
622 if (spread_en[w+
g] * avoid_hole_thr > band->
energy || coeffs[
g].
min_snr > 1.0f)
630 ctx->ch[channel].entropy = pe;
631 desired_bits =
calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8);
637 if (ctx->bitres.bits > 0)
642 if (desired_pe < pe) {
644 for (w = 0; w < wi->num_windows*16; w += 16) {
649 for (
g = 0;
g < num_bands;
g++) {
661 for (i = 0; i < 2; i++) {
662 float pe_no_ah = 0.0f, desired_pe_no_ah;
663 active_lines =
a = 0.0f;
664 for (w = 0; w < wi->num_windows*16; w += 16) {
665 for (
g = 0;
g < num_bands;
g++) {
669 pe_no_ah += band->
pe;
675 desired_pe_no_ah =
FFMAX(desired_pe - (pe - pe_no_ah), 0.0
f);
676 if (active_lines > 0.0
f)
680 for (w = 0; w < wi->num_windows*16; w += 16) {
681 for (
g = 0;
g < num_bands;
g++) {
684 if (active_lines > 0.0
f)
691 delta_pe = desired_pe - pe;
692 if (fabs(delta_pe) > 0.05
f * desired_pe)
696 if (pe < 1.15
f * desired_pe) {
698 norm_fac = 1.0f / norm_fac;
699 for (w = 0; w < wi->num_windows*16; w += 16) {
700 for (
g = 0;
g < num_bands;
g++) {
704 float delta_sfb_pe = band->
norm_fac * norm_fac * delta_pe;
705 float thr = band->
thr;
717 while (pe > desired_pe &&
g--) {
718 for (w = 0; w < wi->num_windows*16; w+= 16) {
731 for (w = 0; w < wi->num_windows*16; w += 16) {
732 for (
g = 0;
g < num_bands;
g++) {
734 FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+
g];
741 memcpy(pch->prev_band, pch->band,
sizeof(pch->band));
750 for (ch = 0; ch < group->
num_ch; ch++)
780 const int16_t *audio,
const int16_t *la,
781 int channel,
int prev_type)
786 int uselongblock = 1;
791 memset(&wi, 0,
sizeof(wi));
794 float const *pf = hpfsmpl;
798 int chans = ctx->avctx->channels;
811 hpfsmpl[i] = sum1 + sum2;
816 energy_subshort[i] = pch->prev_energy_subshort[i + ((
AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)];
817 assert(pch->prev_energy_subshort[i + ((
AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0);
818 attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((
AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)];
819 energy_short[0] += energy_subshort[i];
825 for (; pf < pfe; pf++)
837 if (p > energy_subshort[i + 1])
838 p = p / energy_subshort[i + 1];
839 else if (energy_subshort[i + 1] > p * 10.0
f)
840 p = energy_subshort[i + 1] / (p * 10.0f);
848 if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS])
849 if (attack_intensity[i] > pch->attack_threshold)
857 float const u = energy_short[i - 1];
858 float const v = energy_short[i];
859 float const m =
FFMAX(u, v);
861 if (u < 1.7
f * v && v < 1.7
f * u) {
862 if (i == 1 && attacks[0] < attacks[i])
867 att_sum += attacks[i];
870 if (attacks[0] <= pch->prev_attack)
873 att_sum += attacks[0];
875 if (pch->prev_attack == 3 || att_sum) {
878 for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++)
879 if (attacks[i] && attacks[i-1])
902 for (i = 0; i < 8; i++) {
903 if (!((pch->next_grouping >> i) & 1))
915 for (i = 0; i < 9; i++) {
923 pch->prev_attack = attacks[8];
930 .
name =
"3GPP TS 26.403-inspired model",
void * av_mallocz(size_t size)
Allocate a block of size bytes with alignment suitable for all memory accesses (including vectors if ...
int quality
Quality to map the rest of the vaules to.
static const int16_t coeffs[28]
static const uint8_t window_grouping[9]
window grouping information stored as bits (0 - new group, 1 - group continues)
int grouping[8]
window grouping (for e.g. AAC)
#define AAC_BLOCK_SIZE_SHORT
short block size
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, int short_window)
uint8_t ** bands
scalefactor band sizes for possible frame sizes
#define PSY_3GPP_AH_THR_SHORT
float iir_state[2]
hi-pass IIR filter state
static const PsyLamePreset psy_vbr_map[]
LAME psy model preset table for constant quality.
psychoacoustic information for an arbitrary group of channels
static float calc_reduction_3gpp(float a, float desired_pe, float pe, float active_lines)
float ath
absolute threshold of hearing per bands
#define PSY_3GPP_EN_SPREAD_HI_L1
static av_cold float ath(float f, float add)
Calculate ATH value for given frequency.
float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT *PSY_LAME_NUM_SUBBLOCKS]
enum WindowSequence next_window_seq
window sequence to be used in the next frame
#define AAC_BLOCK_SIZE_LONG
long block size
int * num_bands
number of scalefactor bands for possible frame sizes
LAME psy model preset struct.
void av_freep(void *arg)
Free a memory block which has been allocated with av_malloc(z)() or av_realloc() and set the pointer ...
float thr
energy threshold
float correction
PE correction factor.
static av_cold void psy_3gpp_end(FFPsyContext *apc)
float attack_threshold
attack threshold for this channel
#define PSY_3GPP_EN_SPREAD_LOW_L
float nz_lines
number of non-zero spectral lines
psychoacoustic model frame type-dependent coefficients
int size
size of the bitresevoir in bits
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, float reduction)
#define PSY_LAME_FIR_LEN
LAME psy model FIR order.
#define PSY_3GPP_CLIP_LO_L
#define PSY_3GPP_SPEND_SLOPE_S
#define PSY_3GPP_THR_SPREAD_LOW
context used by psychoacoustic model
single band psychoacoustic information
static float lame_calc_attack_threshold(int bitrate)
Calculate the ABR attack threshold from the above LAME psymodel table.
uint8_t next_grouping
stored grouping scheme for the next frame (in case of 8 short window sequence)
#define PSY_3GPP_SAVE_ADD_L
static av_cold float calc_bark(float f)
Calculate Bark value for given line.
#define PSY_3GPP_SPEND_ADD_S
struct AacPsyBand AacPsyBand
information for single band used by 3GPP TS26.403-inspired psychoacoustic model
AacPsyBand prev_band[128]
bands information from the previous frame
3GPP TS26.403-inspired psychoacoustic model specific data
single/pair channel context for psychoacoustic model
static const float psy_fir_coeffs[]
LAME psy model FIR coefficient table.
float barks
Bark value for each spectral band in long frame.
float pe_const
constant part of the PE calculation
int num_windows
number of windows in a frame
#define PSY_3GPP_SPEND_SLOPE_L
#define PSY_3GPP_THR_SPREAD_HI
constants for 3GPP AAC psychoacoustic model
codec-specific psychoacoustic model implementation
static void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx)
LAME psy model specific initialization.
float thr_quiet
threshold in quiet
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, const float **coeffs, const FFPsyWindowInfo *wi)
int bit_rate
the average bitrate
struct AacPsyContext AacPsyContext
3GPP TS26.403-inspired psychoacoustic model specific data
int prev_attack
attack value for the last short block in the previous sequence
#define PSY_3GPP_SAVE_SLOPE_S
uint8_t num_ch
number of channels in this group
int frame_bits
average bits per frame
int fill_level
bit reservoir fill level
static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock)
#define PSY_3GPP_SAVE_SLOPE_L
#define PSY_LAME_NUM_SUBBLOCKS
Number of sub-blocks in each short block.
const FFPsyModel ff_aac_psy_model
static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, const float *coefs, const FFPsyWindowInfo *wi)
Calculate band thresholds as suggested in 3GPP TS26.403.
static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type)
struct FFPsyContext::@42 bitres
float st_lrm
short threshold for L, R, and M channels
struct AacPsyContext::@5 pe
#define PSY_3GPP_EN_SPREAD_LOW_S
int sample_rate
samples per second
FFPsyChannelGroup * ff_psy_find_group(FFPsyContext *ctx, int channel)
Determine what group a channel belongs to.
main external API structure.
float win_energy
sliding average of channel energy
void * model_priv_data
psychoacoustic model implementation private data
#define CODEC_FLAG_QSCALE
Use fixed qscale.
float active_lines
number of active spectral lines
static float iir_filter(int in, float state[2])
IIR filter used in block switching decision.
int avoid_holes
hole avoidance flag
AacPsyBand band[128]
bands information
#define PSY_3GPP_CLIP_HI_S
static const PsyLamePreset psy_abr_map[]
LAME psy model preset table for ABR.
int window_shape
window shape (sine/KBD/whatever)
float max
maximum allowed PE for bit factor calculation
float previous
allowed PE of the previous frame
AacPsyCoeffs psy_coef[2][64]
float min
minimum allowed PE for bit factor calculation
int global_quality
Global quality for codecs which cannot change it per frame.
static av_cold int psy_3gpp_init(FFPsyContext *ctx)
float spread_hi[2]
spreading factor for high-to-low threshold spreading in long frame
static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, const int16_t *audio, const int16_t *la, int channel, int prev_type)
Tell encoder which window types to use.
static float calc_pe_3gpp(AacPsyBand *band)
windowing related information
#define PSY_3GPP_BITS_TO_PE(bits)
float norm_fac
normalization factor for linearization
int chan_bitrate
bitrate per channel
int cutoff
Audio cutoff bandwidth (0 means "automatic")
#define PSY_3GPP_CLIP_LO_S
#define PSY_3GPP_AH_THR_LONG
int channels
number of audio channels
float pe
perceptual entropy
#define PSY_3GPP_EN_SPREAD_HI_S
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
#define PSY_3GPP_SAVE_ADD_S
struct AacPsyCoeffs AacPsyCoeffs
psychoacoustic model frame type-dependent coefficients
information for single band used by 3GPP TS26.403-inspired psychoacoustic model
AVCodecContext * avctx
encoder context
float spread_low[2]
spreading factor for low-to-high threshold spreading in long frame
#define PSY_3GPP_CLIP_HI_L
int window_type[3]
window type (short/long/transitional, etc.) - current, previous and next
struct AacPsyChannel AacPsyChannel
single/pair channel context for psychoacoustic model
#define AAC_NUM_BLOCKS_SHORT
number of blocks in a short sequence
#define PSY_3GPP_SPEND_ADD_L